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Stability of the deceleration flow of a perfect, i. e. inviscid and non-heat-con- 

ducting gas in a channel with transition through the speed of sound in a normal 

compression shock or in a discontinuity of a more general kind (e. g. in a deto- 
nation wave) is analyzed in the one-dimensional (“hydraulic”) approximation. 
Investigation is based on the assumption of smallness of perturbations and quasi- 

cylindricity of the channel. This permits the use of the method developed by 
Chernyi in 1953, and later used for solving a number of problems of flow dyna- 
mics in channels [l, 21 and also, for analyzing the stability of a two-front deto- 

nation wave p]. In problems of flow stability in channels, the stream at the in- 
let is considered to be supersonic and unperturbed. At the channel outlet the con- 
dition of reflection is specified in the form of a linear relationship which defines 

perturbations of the “left-hand” Riemann invariant in terms of perturbations of 
the “right-hand” Riemann invariant and entropy. Necessary and sufficient con- 
ditions are obtained for cases in which any of the reflection coefficients is zero. 
These conditions are then used for analyzing flow stability in a channel with a 
closing compression shock. Besides the mentioned above Chernyi’s investigations 

of stability of flow in a channel with a closing compression shock without any 
perturbation reflection from the channel outlet and the similar investigations by 
Babitskii in 1959, several other authors had considered this problem [4-g], Un- 
fortunately the results of their investigations, as a rule, lack strictness in spite of 

some valid assumptions (such as Chernyi’s assumption of the channel quasi-cylin- 
dricity). Investigations of flows with a closing shock at the channel outlet under 
stationary conditions 14, 83 and of the flow in a convergent channel with theshock 
fairly close to the outlet [8] represent exceptions from this point of view.Remain- 
ing investigations are based either on some quasi-stationary assumptions of a 
qualitative nature [5] or on the supplementary assumption of shock stability in a 
divergent channel, or take into consideration only linear terms of expansions in 

terms of the space variable in conditions when it is necessary to take into account 
subsequent terms of the series [S]. Some of these are simply false [9], owing to 

an incorrect linearization of relationships at the shock ( l ) . In all of the inves- 

tigations cited above, as well as in the present paper, the linear theory is used. 
Note that numerical methods are recently finding increasing application in the 
analysis of flow stability and other dynamic processes in channels (see, e. g. 

Cl0 - 143). 

* ) V . N . G 1 a z n e v , the author of [9] was acquainted with the relevant considera- 

tions and agreed with these. 
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1. Let us consider the flow in a channel whose cross-sectional area F is a known 
faction of the longitudi~l coordinate 5 measured along the channel axis, We use the 

following notation : t for time, u for the 5 -component of the stream velocity, p for 
pressure, Q for density, e for the specific internal energy, i for the specific enthalpy, 
and n for the speed of sound, with 

e = e (p, Q), i = i f& Q) = e + p / Q, ~8 = o (p, Q) (1.1) 

where the functions appearing on the right are known. For a perfect gas with adiabatic 

exponent x 
e = F / (x - l)Q, i = xp / (x - 'i)Q, a = (Xp i Q)"g 

The above quantities and other parameters without the superscript ““’ are considered 

to be dimensionless. If lo, F,“, u*O and P*” denote characteristic quantities whose di- 
mensions are, respectively, those of length area, velocity and density, their dimensionless 

form is obtained by reducing the lon~tud~nal coordinate with respect to P, the channel 
cross sectional area to F,“, time to l”/u*O, velocity of gas and the speed of sound to u*“, 

density to P*‘, pressure to P”~u*02, and the specific energy and enthalpy with repect to 

% ‘2. Note that in the one-dimensional approximation considered here the characteristic 
area F,” can be conveniently chosen independently of lo, while in an exact formulation 
F”, - 1”=. 

fn the considered approximation the equations which define the nonstationary flow of 
an inviscid and non-heat-conducting gas in a channel with impermeable walls reduces 

to the “characteristic” system 

g+u+~(~+u+=O (1.2) 

~+(uia)~t~{~+(u~a,~)~u~~=o 
g -t @ --a)~-z i {$+(U-a)g}-uuay=o 

Equations (1.2) are satisfied in subregions of parameter continuity. At strong discontinu- 
ities the stream parameters satisfy the laws of conservation which in the case of a com- 
pression shock are in the same appro~mation of the form 

Ip (u - n)l = 0, [p + Q (U - ?‘@I = 0, [2i + (u - +] = 0 (1.3) 

where brackets denote the remainder of the combination of parameters related to oppo- 
site sides of the shock, which appear within these, n is the shock velocity. If 2 = xs (1) 

is the shock equation of motion, then 

n = zs’ (1) 

where the dot denotes a total derivative with respect to time. 

(1.4) 

The equations and formulas (1.1) - (1.4) together with initial and boundary conditions 
which are formulated below completely determine the evolution of flow in the channel. 
Initial conditions must specify the parameter distribution throughout the channel at t = 0. 
The number and form of boundary conditions at channel inlet and outlet sections depend 

on the relation between, u and a at these sections. Thus, for example, if the velocity at 
inlet is supersonic (U > a), all gas parameters must be specified as functions of time. 
If these parameters are constant, we consider the flow at channel inlet as unperturbed. 
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2. In investigations of a stationary flow stability we use the equations and formulas 
at the shock, which are derived from those presented above by the linearization of the 
latter. This implies the smallness of nonstationary perturbations of parameters. If the 

stationary flow contains a discontinuity surface (closing shock) whose position is made 
to coincide with the reference point for 1c, the latter assumption means that zs (t) and 
n (t) are small in comparison with the channel length and the velocity of gas in it. 

In linearizing any of the parameters, for instance velocity, we represent it in the form 

U (5, t) = u (a$ (1 + U, (z, t)}, where the capital letter denotes the corresponding 
stationary parameter and U, (x, t) is the relative nonstationary deviation. An excep- 
tion is the velocity of shock (in stationary conditions the shock is also stationary) for 
which the notation U-n, where u_ is the stationary velocity to the left of the closing 

shock (at 2 = 0) , is used. (Gas flows from left to right). Distribution of “large” (station- 
ary) parameters satisfies equations 

dl? u dInF dP RU* -_=- dlnF 
dx Mz-ids’ (2.1) 

dR RM2 dlnF -zzz--_- 
dx l-M2 dx 

which are obtained from (1.2) by omitting in the latter derivatives with respect to time, 

and in which P,‘R and A are the stationary pressure, density and the speed of sound, 

respectively. 
Perturbations of parameters at the shock surface become discontinuous and satisfy there 

the relationships implied by (1.3). In linearizing these relationships it is convenient to 
have them defined not at the moving discontinuity, i.e. not at x = xS (l), but at its 

stationary position at (5 = ()).The linearization and transfer to cross section x = 0 is 
carried out with the use of formulas for derivatives of stationary parameters in (2.1) and 
of the additional assumption of smallness of derivatives of nonstationary additions with 
respect to z . The latter implies that the linear analydsisrestricted to cases in which 
the contribution of high-frequency components to spectral expansions u, (5, r), . . . 
is not great. It should be noted that in the case of high-frequency perturbations other 

nonlinear effects become important [12]. 
If at the channel inlet the flow remains unperturbed during a fairly long interval of 

time and continues to be unperturbed thereafter, as assumed in the case considered below, 
then for t > 0 there are no perturbations anywhere to the left of the shock. For these 
conditions the linearized formulas derived from (1.3) and (1.4) assume (for a perfect gas) 
the form 

U,+ i- pnt + (1 - J4n = 0, &Lt + (1 1 XM+2h+ + Pn+ + (2.2) 
(K - l)A In F = 0 

Pn+ - Np,, + EA In F, = 0, n = x9’ I U- 
A In I;,? s In F Cx,) - In F (0) = Yx,~ 

( 
K+, N= x{2+(x--1)M_z}M_2 

E = ()I’& (M+2 -M-2) 
I-X+22xM_2 

(1 - M+2) (1 -M-s) ’ y = ( ) 

dlnF \ 
dx x=o J 

Here and in what follows lower case letter denote relative deviations of parameters from 
their stationary values (for the same z) and the subscripts minus and plus denote para- 
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meters upstream and downstream of the closing shock at z = 0 , respectively. 
The linearization of system (1.2) and all subsequent investigations are carried outon 

the additional assumption of the quasi-cylindricity of the channel cross section to the 
right of the closing shock. This assumption means that for z > 0 any stationary para- 
meter, for instance velocity, can be presented in the form ,JJ (x) = TJ+ (1 + n, (x)}, 

with 1 U, (3) / < 1 and 1 du, (x) / dx I< 1, Substituting similar expressions into 
(2. I), discarding terms of second and higher order, and integrating the derived linear 
system, we obtain 

U, (x) = A In F (x) / (M+2 - I), pe (x) = xM+~ A In F (x) / (2.3) 
(1 - M+2), pe (x) = M+2 A In F ix) / (1 - II~+~) 

(A In F Ix) G In F fx) - In F (0)) 

in whose derivation it was taken into account that in accordance with the definition of 
quantities with subscript en, (0) = pe (0) = pe (0) = 0. 

In the case of a quasi-cylindrical channel we have within the accuracy of smalls of 

higher order u (5, t) = U, (1 + u, (z) + u, (x, t)}. Substituting this and similar 
expressions for p (2, t) and P (x, t) into (3.2). carrying out linearization and taking 
into account that u, (x), pe (x) and Pe (x) are derived by formulas (2.3), we obtain 

for the nonstationary additions the following system: 

( -& + UL $) (pn - WJ = 07 {-& + (U, + A,) ;} (U,, f+ Pn) = 0 

1% + (0, - A+) &} (un - & pn) = 0 

whose solution is of the form 

Pn h, t> - wn (x, t) = 

4 (G t) + (1 / xJf+)P, 
% (5, 0 - (1 / xM+)p, 
(5 = 5 - U,t, g = x 

s (5) (2.4) 
(xc, t) = 2R G) 

(x7 t) = 2L (11) 

- (U, + A+)t, 7 = x - (V, - A+P) 

where the factor 2 in the right-hand parts of the second and third equalities is introduced 
for the sake of simplifying subsequent formulas, and S, K and L are arbitrary functions. 
Function S is constant along every particle trajectory, while R and L are constant 
along the trajectories of acoustic waves propagating over particles in the direction of 
flow and against it, respectively. In the considered approximation these functions repre- 
sent the entropy of the right- and left-hand Riemann invariants. We call these the S-, 
R- and L-waves. 

Solving (2.4) for U,, p,, and P,, , we obtain 

u, (5, t) = R IE) + L ($7 pn fx, t) = {R (E) - L (Tj)}xM+ (2.5) 
Pn (x7 t) = {R (5) - L WM+ - s (5)x- 

At the shock stationary position ( I(: = 0) functions R, L and J’ must satisfy the linear 

relationships obtained by the substitution of (2.5) into (2.2). Since only the perturbations 
determined by the left-hand invariant reach the shock from the right, it is expedient to 
rewrite the corresponding relationships in the form of formulas defining the reflected 
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invariants (R+and S,) and the shock velocity n in terms of L+ and of the shift of 
the shock from its stationary position or of increments A In F, corresponding to such 
shift These formulas are of the form 

R+ = cpL+ - $A In F,, S, = (p’L, - $‘Aln Fs (2.6) 
n = pL+ - /3A In Fs 

The derived formulas with appropriately specified coefficients cp, 9, . . . are valid 

for a fairly wide class of strong discontinuities (e. g, , detonation waves and condensation 

shocks considered in a single-front approximation). In the case of a compression shock 
these coefficients are functions of 1M_ and x only, and in conformity with (2.2) and 

(2.4) 
(I- 2M+) N + xM+~ (K-1)N-bE M 

‘?= (1+2kf+)N+~M+2 ’ += (1+2M+)N+xM+2 + 
(2.7) 

q’ = fif+ (1 - cp) (x - N)x / N, $’ = {E - iv+ (x - N)$}x/N 

p= ‘I -MM+-(l+M+)cp (1 + M+) 4’ 
(K - 1) M+ ’ @=I- (K-l)M+ 

If at the channel outlet the velocity is subsonic, the R- and S-waves reach it from 
the channel side and may be reflected in the form of L,- waves. Taking this into consi- 
deration we define the boundary conditions at the channel outlet by 

L = xR + X’S’ for x = I (2.8) 

where X and 2‘ are reflection coefficients which unlike the coefficients cp, W, . . . 
in (2.6) depend not only on stream parameters at the indicated cross section but also on 

the.equipment adjacent to the investigated channel from the right, In deriving (2.8) 1” 
was taken as the distance from the stationary shock to the channel outlet. For u*’ and 
F,” we select the stationary flow velocity downstream of the shock and the cross-sec- 
tional area of the channel at 5 = 0 , respectively. For such u*O and F,” 

U_ = K, A In F = In F, g=x-t (2.9) 

5=x-(1 +$)t, q= x-(I-$)t + & 

3, In the investigation of flow evolution in a channel an important part is played by 
the times ‘cs, 7, and ‘rl, which are needed for waves of related kind to pass from the 
closing shock to the channel outlet. In dimensionless form Q = 1, ~~ = hf+ / (1 $- 
M+) and ‘~1 = M+ ! (1 - M+). The time it takes an acoustic wave originating at 
the cross section L = 0 in the form of an R-wave and reflected at cross section z= 1 
in the form of an *L-wave, to cover the whole of that path is r = 7, + rr = 2M+ / 

(1 - M+2). 
Let us examine the behavior of the flow produced as the result of perturbing a certain 

stationary flow mode which corresponds to specified supersonic parameters at the chan- 
nel inlet and a given pressure pb at its outlet (z = 1). The closing shock (or disconti- 
nuity of some other kind) in stationary mode is located at x = 0 and M+< 1, i.e. 
the flow in region 0 < 5 < 1 is subsonic. The stationary state of the stream can be distur- 

bed by perturbations emanating from the channel inlet and outlet, as well as by any arbitrary 
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external factors (force, thermal effects, etc. ). All such factors are assumed to be absent 
at the initial instant of time t, > z (in particular, the flow upstream of the shock dis- 

placed from its stationary position is unperturbed), and the reflection condition (2.8) is 
satisfied at cross section z = 1 at least during a time interval not shorter than ‘G . In 

the first stage of our investigation we set in that condition X # 0 and X’ = 0, which 
corresponds to the reflection of R-waves only. let us examine the behavior of flow for 

a fairly long t on the assumption that the above conditions remain valid for t > to). 

t 
j “.....\. 

..*...,, 
. . . . 

i”\ ..,, *....... 
I ‘.... 

Id- 

Note that the analysis of behavior of xS (t) and L, (1) 
provides a complete picture of the behavior of flow. The 
first two equalities of (2.6) with allowance for (2.9) and for 

In I;, = Yx, (t) make it possible to determine R, (t) and 

“YPC:._ 
./ .** 

( ./ 
\ . . . 

“k..., 
\ ‘.... 

a I x 

Fig. 1 

s, !t) . The latter prove to be linear combinationsof xS (1) 
and L, (t) and owing to their properties are maintained 

along lines E = const and 5 = const , respectively, 
Functions xS (t) and L, (t) satisfy a system of two dif- 

ferential-difference equations, the first of which is derived 
from the last relationship in (2.6). After elimination of n 

with allowance for (2.2) and (2.9) it assumes the form 

xs’ (t) = poL+ (t) - poyxs (t) (po = KCL, PO = w (3.1) 

To obtain the second equation we consider the pattern of reflection of R- and L-waves 
from the shock and from the channel outlet. The L-wave which at instant t > to 

reached the cross section x = 0 is generated by the reflection of an R-wave at instant 
t - Tl from cross section x = 1. The latter had left cross section x = 0 at instant 

t - %l - ‘6, = t - T. Trajectories of the R-, L- and S-waves in the xt -plane 
are shown in Fig. 1 by solid, dot and dash-dot lines, respectively ; arrows indicate the 
direction of wave propagation and the dash line represents the trajectory of the closing 

shock. Note that in the considered linear approximation the reflection of L-waves from 
the shock is replaced by their reflection from cross section x = 0. The only perturba- 
tion reaching the shock (the upper one at x = 0) at instant t - T, is the L-wave. 
Hence for X’ = 0 from (2.6) and (2.8) we obtain 

L, (t) = cpoL+ (t - T) - ~0Yxs (t - 4 (cpo = X(P, w. = x44 (3.2) 

where ‘pO and I&-, are to be taken as the combined coefficients of reflection from the 
shock and from the channel outlet. It is convenient to use in the analysis besides (3.2) 

the equation 
L,’ (t) + gJ-G?* (t - T) - cp,L+’ (t - T) = 0 (3.3) 

which is obtained by differentiating (3.2) with respect to t. 
Equations (3.1) and (3.3) constitute a system of two differential-difference equations 

of the neutral kind [15] whose solution for t 3 t , o is completely determined by the “in- 

put data” along segment to - ‘G < t < t,. These data specify in that segment two func- 

tions zS (t) = xSO (1) and L, (t) = LO+ (t). In the considered case it is sufficient to spe- 

cify xS (t) only at one point (e. g. at t = to), since X~I) (t) is uniquely determined in that 
segment by (3.1) when function L,+ (t) is known for LI - T -< t < to . 

For known initial conditions the behavior of the solution of Eqs. (3.1) and (3.3) is de- 
termined by the disposition in the complex plane of the roots of that system. The dispo- 
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sition is defined by [ 151 

h [(a + Par> (1 - qPoe-rh) + ~o$‘oYe-5h] = 0 (3.4) 

For all solutions of (3.1) and (3.3) to be bounded for t -+ 00 (i. e. for the initial sta- 

tionary flow to be stable) it is sufficient according to [ 151 to have the following condi- 
tions satisfied : first, the real parts of all roots of (3.4) must not be positive and, second, 

every root of (3.4) with a zero real part must be simple. The first condition is also the 

necessary condition. 
The root J. = 0 is simple. It is convenient to write the equation which determines 

the infinite sequence of remaining roots of (3.4) as 

pe’ + q - ze’ + ‘poz = 0 (3.5) 

(P = --7(JoY, q = ‘GY (PO% - ~Loqd, 2 = 79 

The analysis of this equation may be carried out by a method similar to that used in 

[ 151 for the case of ‘$0 = 0. Omitting the details of the analysis, we present only the 
final results. The necessary and sufficient conditions for all roots of (3.5) to have nega- 
tive real parts require that the four inequalities 

I%l<Il P<l-90, P < - Q < IQ (1 - ‘p2d + P2 (3.6) 

be simultaneously satisfied. In these inequalities a is to be taken as the root of equation 

sin a i (cos a - cp,,) = a I p when p # 0 . If p = 0, it is necessary to set in 

(3.6) a = arccos vO. In both cases a must be taken from the interval 0 < a < n. 
The first of conditions (3.6) has a particularly simple meaning, namely, that the com- 

bined coefficient of reflection of an acoustic wave from the discontinuity and from the 

channel outlet must be smaller than unity. 
An important aspect should be noted. In the absence of entropy wave reflection(X’ = 

0) the linearized input problem contains seven parameters, viz. coefficients q, I$, u 
and p, which appear in conditions (2.6) at the discontinuity, parameter Y which defines 
the shape of the channel at cross section x = 0, the lag time ‘t and the coefficient x 
of the R-wave reflection from the channel outlet. As implied by (3.6). the behavior of 

flow is determined not by individual parameters, but by three combinations of these : 
T~=x(P,P=-p,,Yandq= - qOxY, where p. = q3,, and q. = ‘t (cl& - fl,,cp), as 
well as by 9, which is a function of II, by the parameters of gas upstream of the discon- 
tinuity (in the case of a compression shock also by the Mach number M_) and by the 
kind of the discontinuity. For a flow specified upstream of the discontinuity and given 

parameters Y and X it is always possible to verify if conditions (3.6) - which guarantee 
the stability of the considered flow - are satisfied. If an exact equality is obtained in- 
stead of any of the inequalities in (3.6) Eq. (3.4) has roots with zero real parts, generally 
different from h = 0. Supplementary investigations are then required for determining 
the behavior of solution. A reversal of the inequality sign of even a single inequality in 
(3.6) indicated the instability of the initial stationary flow. 

The above shows that conditions (3.6) make it possible to determine regions of stable 
and unstable flows in the governing parameters of the problem. To illustrate the results 
of such determination the case of the closing compression shock in a perfect gas with 
x = 1.4 is shown in Fig. 2. The curves are plotted in the xlV_-plane, where W_ is 
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the ratio of flow velocity upstream of the shock to the critical velocity (in stationary 
conditions). To facilitate the description of these results we denote by (3.6.1). . . . . , 
(3.6.4) the inequalities in (3.6) after the equality sign has been substituted in these for 
the inequality sign. 

Let the shock be localized in the divergent part of the channel (Y > 0). The lower 
boundary of stable flows is then defined by the solid line curve in Fig. 2. Its shape and 

position is independent of parameter Y. The equation of this curve x --p. / (lo is 
readily derived from (3.6.3). Curves which form the upper boundary of stable flows de- 

pend on Y. These curves are shown in Fig. 2 for Y :- 0, 0.1, 0.2, 0.3, 0.4 , and m 
by dash lines (numbers indicate values of Y for each curve). For I/’ --= 0 the upper 

boundary is defined by the equation x ~ 1 / ‘11 which for this particular value of 1’ 

can be derived either from (3.6.1) or (3.6.4). Boundaries corresponding to Y # (1 are 

determined by Eq. (3.6.4) ; with increasing Y they are monotonically displaced down- 

ward. For this reason the limit curve corresponding to Y =; m is also shown in Fig. 2. 

.!a IV- 

x 

70 

L7 
L 

-711 

-26 ,L 

Fig. 2 

It is defined by the equation x = p0 I qo. Since the quasi-cylindrical approximation 

is valid only for fairly small Y, hence in an arbitrary case in which it is still valid the 
upper boundary of the stable flow region lies above that curve. 

In the case of a convergent channel (Y < 0) the region of stable flows lies above 
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the solid line curve, as opposed to the case of Y > 0 _ The stability region is bounded 

on the left partly by the solid line and partly by the curve X = (1 + p,,Y) I cp, whose 

equation is obtained from (3.6.2). Within the limits of variation of X the corresponding 

section of the boundary appears in Fig. 2 only for fairly large 1 Y I. For Y = -0.3 
and - 0.4 these segments are shown in that figure by dotted lines. Lower boundaries of 
the stability region depend for Y < 0 on the value of Y , and are shown by dash-dot 
lines for five of its values. For Y = 0 the boundary is defined by the equation X = 
-1 / cp which is a corollary of (3.6.1). as well as of (3.6.4). For Y < 0 the lower 

boundaries are determined by Eq. (3.6.4) which implies their displacement upward and, 

for Y = --CM , merging with the solid line curve. In fact, the stable flow region vani- 

shes much earlier, owing to the displacement of the left-hand boundary (shown by the 
dotted line) to the right and downward. To make the above clear boundaries of regions 

I and II - which are regions of stability for Y = 0.4 and Y = -0.4 ,,respectively. 

- are shaded in Fig. 2 from inside. 

The above analysis is readily applicable to the case in which only entropy waves, i. e. 
when in (2.8) X = 0 and X’ # 0 are reflected from the channel outlet. All conditions 
derived above remain valid, if X’ 7 9 , q’ and T’ = 1 / (1 - M,), where cp’ and 9’ 
obtained for the closing shock from (2.7) are substituted for X, cp, I# , and r . The 
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results of related investigations plotted in the X’w_ -plane are shown in Fig. 3, where 
the various curves (shown by solid, dash, etc. lines) and also regions I and I I have the 
same meaning as in Fig. 2. The essential difference between these figures is that curves 

lying in Fig. 2 above (below) the axis of abscissas appear in Fig. 3 below (above) that 
axis. Moreover, in the case of entropy wave reflection the curves intersect each other, 
whichdoes not occur in Fig. 2. 

4. Conditions (3.5) and for x = 1.4 Figs. 2 and 3 make it possible to solve the 
problem of stationary flow stability in a quasi-cylindrical channel with a closing com- 
pression shock for a wide range of boundary conditions. 

As an example, let us consider several specific methods of formulating such conditions. 
The axis of abscissas lying entirely in region I in Figs. 2 and 3 correspond to a com- 

plete absence of perturbation reflection from the channel outlet (X = X’ = 0 for all IV-) . 

Hence in this case the flow with a closing shock is stable in a divergent channel and un- 
stable in a convergent one. As previously indicated, this conclusion was arrived at by 

Cherrryi in 1953. It can be directly derived from (2. S), (2.8) and (2.2) or from Eqs. (3.1) 
and (3.3) which in that case are of the form 

xs’ (t) = - i30Yz, (t), L; (t) = 0 
From this with allowance for (2.8) and X = X’ = 0 we obtain 

5, (t) = 5s (to) cxp i&Y (to - t)), L, (t) = 0 (4.1) 

Computations of PO by formulas (2.7) show that it is positive for all W_ and x. Hence, 
in accordance with (4.3) the flow is stable for Y > 0 and unstable for Y < 0 , This 

conclusion is also valid for a number of other boundary conditions at cross section x = 1. 
Thus, when pressure is fixed at the channel outlet, then in accordance with (2. 5) and 

(2.8) X = 1 and X’ = 0 for all W_. As seen from Fig. 2, the straight line X = 1 lies 
entirely in region I. 

When the Mach number or the gas flow rate are fixed at the channel outlet, the reflec- 
tion coefficients in (2. 8) are defined as follows: X = [(x - 1) M, - 21 / ](x - 1) 1M+ -I- 

21, X’ = 1 / x [(x - 1) M, + 21 ,and X = (M, + 1) i (M, - 1) and X’ = 1 / 1~ (1 - 
M+) , respectively. In the first case both reflection coefficients are in the entire range 

of IV_ smaller in modulo than unity. Consequently, curves x = x (W-) and x’ = 
X’ (WJ lie in region I in Figs. 2 and 3. Similar behavior of the condition of flow rate 
constancy is shown in these figures by dash-double-dot line. Although the related curves 
lie closer to the boundary of region I than in previous cases, they do not leave it (includ- 

ing W- + 1 when X -f - 00 and X’ -) C-J). Note that all of the above statements are 
valid for all x in the range 1.1 - Vs. 

It should be stressed that a complete investigation of stability in the last two cases 
requires the taking into account of simultaneous, not separate reflection of R- and s-. 
waves. It can be shown that the latter requirement reduces to the analysis of roots of 
the characteristic equation 

pez $- q - z (eZ - @oekz) + ‘poz + (q’T / .t’) ekr = 0 (k = (.t - T’) i 7) (4.2) 

where vo’ and q’ are derived from ‘p,, and q after the substitution of X’, Cp’, $)’ and ,T’ 

for X, cp, + and T. 
The characteristic equation (4.2) is equivalent to a system of three differential-differ- 

ence equations with two lag (times) T and T’ , and is more complex then, for instance, 
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the characteristic equation of a similar kind obtained in p], where the left-hand part of 
the equations is a quasi-polynomial without its principal term. The latter indicates the 

instability of solution for any other values of all other constants appearing in the equa- 
tion [ 151. Incidentally, the latter aspect was not noted in [3], and this led to the errone- 

ous conclusion about the existence of stable modes of detonation combustion in the theo- 

ry of the two-front model suggested in that paper. The conclusion about the absence of 
stable modes of detonation combustion was arrived at in [ 161 with the use of a somewhat 
different two-front model, and for the model used in [3] it was obtained in [ 171. In fl6], 
as well as here for (3.5) the necessary and sufficient condition for the real parts of roots 
of the related characteristic equation to be nonnegative is derived. Formulation of similar 

conditions in the case of (4.2) is difficult It is nevertheless possible to carry out the 
necessary analysis for fixed W-, Y and x by numerical methods with the use of the 

” D-subdivision” [ 18, 191. 
Without going into details of such analysis - which could be the subject of a special 

investigation - we would point out the following. As seen from Figs. 2 and 3, the region 
of stable modes in the XX’-plane occupies for Y > 0 and any fixed Tit’_ some neigh- 

borhood of the coordinate origin (x = x’ = 0). An idea of the dimensions of that region 
along the axes x and x’ of the xx’ -plane is provided by the boundary curves plotted in 

Figs. 2 and 3, with the related points tending to infinity for W_ - 1 . As previously no- 
ted, the coeffcients x and X’ do not exceed in modulo unity, if the Mach number is fixed 

at the channel outlet. Comparison of their values with the boundary values taken from 
Figs. 2 and 3 shows that in the indicated cases one can hardly expect instability (stabi- 

lity) of flow with a closing shock in a divergent (convergent) channel. Higher values of 
related coeffcients for a fixed gas flow rate do not permit to make a similar statement 
with the same degree of confidence in the last case. 

Let us conclude with a few general remarks. First, the limitedness of the used here 
quasi-cylindricity approximation must be stressed. Hence it cannot be excluded that in 
the case of channels which do not satisfy the condition of quasi-cylindricity the conclu- 

sions arrived at above will not hold. This relates in particular to the possible instability 
of flow with a closing shock in a divergent channel. The second remark relates to the 
limitedness of the linear approximation in cases in which results of its application indi- 

cate an instability of the flow, which is particularly important for transonic velocities. 

Authors thank G. G, Chernyi, R, K. Tagirov, V. A. Levin and F. A. Slobodkin for valua- 
ble discussions and advice, and L. P. Frolov for his assistance in this work. 
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